

U.S. Army Research Laboratory (ARL)

XPairIt Simulator for Peptide Docking and Analysis

by Michael S. Sellers and Margaret M. Hurley

ARL-TR-6999 July 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5069

ARL-TR-6999 July 2014

U.S. Army Research Laboratory (ARL)
XPairIt Simulator for Peptide Docking and Analysis

Michael S. Sellers and Margaret M. Hurley

Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

July 2014
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 2010–October 2012
4. TITLE AND SUBTITLE

U.S. Army Research Laboratory (ARL) XPairIt Simulator for Peptide Docking
and Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michael S. Sellers and Margaret M. Hurley
5d. PROJECT NUMBER

BRCALL08-PER3
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-WML-B
Aberdeen Proving Ground, MD 21005-5069

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6999

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Identifying the natural orientation of a peptide bound to a protein via computational means presents unique obstacles not often
encountered in the more common searches of ligand-protein or protein-protein complexes. Along with a brief review of the
current state of methods in these simulations, we introduce software to tackle many of the challenges that still exist. These
hurdles are addressed with the XPairIt API, a docking protocol which unites powerful open source simulation packages and
enhances the representation of energetics and flexibility within a simulation. Ability of the protocol is demonstrated through a
global docking case study, and we show improvement in binding energy with the combined use of molecular dynamics and
Monte Carlo docking. Comparison of methodology and final root mean squared displacement (RMSD) of our bound structures
to previous work is made, and we highlight improvements in peptide and protein flexibility.
15. SUBJECT TERMS

peptide docking, docking methodology, software design

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

34

19a. NAME OF RESPONSIBLE PERSON
Michael S. Sellers

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
410-306-0728

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables v

Acknowledgments vi

1. Introduction and Background 1

2. Methodology 4

2.1 XPairIt Application Programming Interface (API) Philosophy and Structure4

2.2 XPairIt API Classes...6

2.3 External Software Interface and Control ...7

2.4 A Simulation With XPairIt API ..7

2.5 Improved Docking Methods for Peptide Systems with XPairIt Docking Protocol8

3. Results and Discussion 10

3.1 Stage 1 Global Docking ..11

3.2 Stage 2 Focused Docking ..12

3.3 Analysis of Rank 2 Structure...14

3.4 Effects of Molecular Dynamics Within the XPairIt Protocol16

4. Summary and Conclusions 17

5. References 19

List of Symbols, Abbreviations, and Acronyms 23

Distribution List 25

 iv

List of Figures

Figure 1. XPairIt API Diagram showing simulation components, class hierarchy, control, and
connection to external software (XExternal) and hardware (HPC). Supported External
Programs: PyRosetta, NAMD, PSFGen, STRIDE, VMD, APBS, and GAMESS (1, 4, 34–
37). ...5

Figure 2. Python script example of a simple XPairIt docking simulation.8

Figure 3. Example positions of peptide during an XPairIt docking simulation. (1) Initial
placement, shown in green. (2) Docked peptide, in blue. (3) Minimized structure using
conjugate gradient method after 2ps molecular dynamics run, in red.9

Figure 4. Stage 1 global docking results presented as overlay of the top 25 docked structures.
Structures are ranked by their interface energy using Rosetta’s score12. Frequently
contacted protein residues are shown with a shaded surface. ..11

Figure 5. Stage 1 global docking results presented as contact histogram. Number of peptide
residues (Frequency) within 4.0Å of particular protein residues (Residues on A) for the
top 25 docked structures. Structures ranked by their interface energy using Rosetta’s
score12. ..12

Figure 6. Stage 1 global docking top structures based on interface energy for protein residues
with sufficient contact. Peptides are labeled with their rank for the top 25 structures based
on interface energy. Shown as a shaded surface are protein residues corresponding to
histogram peaks in figure 5. ...13

Figure 7. Global dock #8 structure, one of four starting locations for focused docking, with
most frequently contacted protein residues highlighted. ...15

Figure 8. Rosetta score12 interface energy per peptide residue (Chain X) for stage 1 global
docking #8 structure: LEFT step (i) Rosetta Dock and RIGHT step (iii) Rosetta Repack
Sidechains, after NAMD MD + Minimization. Peptide sequence: KSTQATLERWF. Note
difference in ordinate scales. ..17

 v

List of Tables

Table 1. Stage 1 global docking results clustered as list of protein residues with six or more
peptide contacts in the top 25 structures. Structures ranked by interface energy.13

Table 2. Stage 2 focused docking results for each starting structure, ranked by total energy.14

Table 3. Final interface energy of three bound structures in score12, CHARMM with
Generalized-Born implicit solvent (GBIS), and CHARMM’s vdW component.16

Table 4. Interface energies for docked structures at each step of the XPairIt Docking
Protocol. Energies in Rosetta units. ...17

 vi

Acknowledgments

The authors would like to acknowledge and thank their experimental collaborators, Dimitra
Stratis-Cullum, Bryn Adams, Joshua Kogot, Deborah Sarkes, Irene Val-Addo, and Paul
Pellegrino, of the U.S. Army Research Laboratory (ARL), Sensors and Electronic Devices
Directorate, and Rebecca Brown, Candice Warner, and James Carney of the U.S. Army
Edgewood Chemical and Biological Center.

The authors gratefully acknowledge use of high-performance computing (HPC) resources
administered by the Department of Defense High-Performance Computing Modernization
program.

This project receives support from the Defense Threat Reduction Agency Joint Science and
Technology Office for Chemical and Biological Defense (Grant no. BRCALL08-Per3-P-2-
0028). Research is also supported in part by appointments to ARL Postdoctoral Fellowship
Program administered by the Oak Ridge Associated Universities through a contract with ARL.

Images of protein structures were created using Visual Molecular Dynamics (VMD), and plots
were made with an XPairIt interface to the Matplotlib Python library (1, 2).

1

1. Introduction and Background

As computational biology continues to play a larger role in applied research, collaborations
between simulation and experiment can benefit from software that provides access to various
styles of methods, enabling customization and rapid application to a wide range of biological
systems. A key work by Elcock, et al. sets the stage in computational biology for this style of
adaptable research, early on in the last decade (3). In their investigation of the driving forces in
protein-protein interactions, the authors draw upon several computational methods to characterize
interaction energy and orientation, and their effects on macroscopic quantities like the second-
order virial coefficient. Years later, researchers have at their disposal many software options for
tackling the handful of diverse systems involving biomolecular interactions. However, features
that make software in computational biology accessible, usable, and powerful remain characteristic
of a select few (4–9). Therefore, the challenge presented to this decade’s researcher is how to
efficiently use these software packages in concert to study aspects of a biological system.

We set our focus on open-source simulation packages, and unite these powerful, sometimes
disparate modes of simulation with a simple, extensible, and object-oriented Python suite of code
called XPairIt. Joining such programs provides enhanced simulation functionality through a
concerted use of each program’s multiple length scales, interatomic potentials, and simulation
methods. This is accomplished with the parallelized core of XPairIt, which additionally contains
many data management and organization options, analysis tools, and custom simulation
methodology. Two open-source simulation APIs offer options similar to XPairIt. The first is the
Molecular Modeling Toolkit (MMTK) (10). MMTK, initially developed about a decade ago, is
written in Python using object-oriented design, and is a more stand-alone piece of software when
compared to XPairIt. It incorporates internal molecular dynamics and Monte Carlo algorithms,
several interatomic potentials, and normal mode analysis into a single software package for the
simulation of protein systems. The second is SimTK’s OpenMM, which is another general
simulation toolkit using graphics processing unit (GPU) hardware acceleration (11). These
toolkits differ from XPairIt in that much of the simulation in MMTK and OpenMM is done
within the core of the toolkit, where in XPairIt the simulation engines are typically external
software packages. In this application of the XPairIt API, we create a freeware, extensible, high-
performance computing (HPC)-ready, multi-scale biomolecular simulator built to include several
industry proven external software packages to tackle many of the current challenges in modeling
and analyzing peptide-protein complexes.

The main simulation field specializing in the investigation of peptide-protein interactions is
known as “docking.” That is, the efficient simulation of the interaction of two biomolecules to
determine their natural and preferred orientation when in contact with one another. Some of the
multi-method functionality for molecular docking offered by XPairIt is currently available in a

2

few commercial software suites, such as Molecular Operating Environment (MOE) or
Shrodinger through its PIPER and JAGUAR modules (8, 9). While these software packages are
largely successful in modeling many types of biomolecular interactions, there are several
shortcomings which become apparent when applied to the docking of certain molecules, such as
peptides (12, 13).

Recent software innovations have attempted to address the challenges of incorporating peptide
flexibility in docking simulations and adequately ranking (“scoring”) the thousands of generated
structures to determine the likely binding location. Many use the Rosetta Modeling Suite, which
is a software package for protein structure prediction, protein-protein and small molecule
docking, and protein design (7, 14). This was used to study protein-protein docking using only
fixed protein displacement and side-chain rotamers, but the authors highlight possible
improvement by allowing for a flexible backbone (15, 16). Rosetta was also used to study
peptides where a starting peptide-protein crystal structure was known, and small Monte Carlo
(MC) simulations of the peptide backbone were incorporated. The resulting docked structures
exhibited more hydrogen bonds and better van der Waals contact (17). Other modes of Rosetta
have also been used to improve docking. For example, Sammond, et al. use a combination of MC
backbone moves and the design feature of Rosetta to optimize peptide structure and sequence
when bound to a G-protein α subunit (18). Additionally, work by Raveh, et al. incorporates a
more robust design scheme of Rosetta to optimize peptide structure with multi-residue fragment
building (19, 20). Here, the peptide sequence is fixed and Rosetta is used to sample various
groups of backbone dihedral angles—effectively using MC tests of α, β, or coil structures on 3
to 4 residue-length clusters of the peptide. They also incorporate a scoring scheme using multiple
rounds of rigid body docking, while actively changing the weights of the attractive and repulsive
terms of the Rosetta score12 score function. A validation of this method on about 20 peptide-
protein crystal structures shows promising results.

Other simulation methods have been used to improve flexibility and scoring/ranking as well. Use
of molecular dynamics software in combination with a docking program has emerged recently as
a technique complementary to all-Monte Carlo style docking. Variations of this method are
outlined in recent review articles (21, 22). One of the early uses of molecular dynamics in
docking was shown in Lin et al., where flexibility of the protein receptor is captured through
long molecular dynamics simulations and ligands are then docked to the ensemble of receptor
configurations (23). Later on, a multi-software method was used by Okimoto et al. to combine
molecular dynamics and solvation energy computation into docking small ligands (24). The
authors used GOLD to first dock the ligand, and then minimized the outputted structure using a
molecular mechanics forcefield. The minimized structure was then simulated with AMBER 8.0
(ff03) using molecular dynamics on add-in computational hardware called MDGRAPE-3. Finally,
the structure was scored with MM/PB-SA to find the ∆G of binding by computing the
conformational energy of the ligand, nonbonded van der Waals and electrostatic interactions, the
solvation free energy, and the nonpolar solvation free energy. For a sample of 1000 ligands,

3

including 30% active ligands, the authors report improved results for three target proteins, with
the exception of CDK2.

In a another approach, Antes presented DynaDock in 2009, a joint dynamics and docking
software package using customized interatomic potentials via the OPMD approach (25). OPMD
was used to sample multiple energy minima around a crystal structure configuration with
dynamics, and did not rely on annealing methods. Antes also incorporated a custom scoring
function, combining the conformational energy of the peptide, with nonbonded van der Waals
and Coulombic interactions with the protein. When compared to AutoDock, the method
performed better for peptides where the number of rotatable bonds is larger than 15 (26). Finally,
Dagliyan et al. used several molecular dynamics methods, without formal docking software, to
generate bound configurations of peptide protein complexes (27). Without knowledge of the
bound crystal structure, replica exchange dynamics coupled with discrete molecular dynamics
integration is used to simulate various peptides at random points around the protein surface. The
authors then compute the binding energy for these structures with the MedusaDock scoring
function. Results suggest that electrostatics play an important role in the formation of an
“encounter complex” prior to forming a bound conformation.
In addition to molecular dynamics and mechanics, use of different length and timescale methods
can improve flexibility and scoring/ranking as well. Nowosielski et al. connected quantum level
energetics to molecular dynamics and docking methods to study ligand binding in pantothenate
synthetase and successfully simulated the open-to-closed transition of the enzyme for ligand
binding (28). To achieve longer timescale simulations, the steered-molecular dynamics (SMD)
method was used on various ligand-enzyme complexes by Whalen et al. (29) SMD simulations
captured ligand binding energies by inducing a transition from ligand-bound and enzyme-closed
to ligand-unbound and enzyme-open.

Although these examples incorporate dynamics slightly differently, they all show good
improvement on statically docked structures when applying dynamics in lieu of Monte Carlo
moves. It is also important to note that only one of the previous docking methods outlined start
without a crystal structure, and many do not attempt docking peptides with unknown binding
locations. Even so, these works do highlight the benefits of using dynamics, and also exhibit a
need for a generalized, usable code to connect different styles of simulation software. In recent
works by Seeliger et al. and Lill et al., the authors connect the popular PyMol visualization and
analysis program to docking and molecular dynamics software (30–32). With this software,
researchers can conduct simulation and analysis of ligand binding and design within PyMol
using a graphical interface. Professional 3D modeling applications, such as Blender and
Autodesk 3DS Max* are unique areas for connection to molecular docking. Users can add a plug-
in from the Olsen Laboratory at the Scripps Research Institute called ePMV to dock biological
structures and compute energies (33).

*Autodesk 3DS Max is a registered trademark of Autodesk Inc.

4

The XPairIt Application Programming Interface (API) offers similar styles of docking
methodology and we show how some of these can be combined to improve flexibility and
scoring/ranking in peptide-protein docking. XPairIt works as a controller code for PyRosetta,
NAMD, PSFGen, STRIDE, VMD, APBS, and GAMESS, and allows a user to move information
between these software packages for custom simulations (1, 4, 34–37). Additionally, the XPairIt
API and external software packages are tailored for use on high-performance computing (HPC)
systems, which is critical for the search of unknown peptide binding locations and the
optimization of peptide sequences for improved protein binding.

With existing state-of-the-art in mind, the authors use a bottom-up approach to create a
connection between the various styles of simulation software and improve interoperability of the
software and their methods. The XPairIt API applied to peptide docking joins the external
molecular dynamics package NAMD and docking software PyRosetta to enhance peptide-protein
binding, which we refer to as the XPairIt Docking Protocol (4, 34). When contrasted with other
multi-method docking software, use of the XPairIt Docking Protocol offers more detailed
control of docking simulations and the ability to run simulations on HPC systems. In general, the
methods in particular are similar to the aforementioned work connecting PyMol, docking, and
molecular dynamics; however, there are several differences in the approach taken to construct
the simulations, the style in which we use molecular dynamics, and the analysis of the simulation
results. Furthermore, the XPairIt Docking Protocol is based on the highly extensible XPairIt
API, which allows for the simple addition and use of other custom code or external software
packages. In the following text, we provide our approach for peptide docking with the XPairIt
Docking Protocol, and detail the use of external software to address the challenges inherent to
peptides: flexibility and scoring. A previous version of this protocol was reported earlier (38).

We organize this work by first outlining the XPairIt API structure and philosophy, then develop
a more robust and improved style of molecular docking, applied to peptide-protein interactions,
in Section II. Section III illustrates the application of the XPairIt docking protocol to a common
case study. Analysis and Discussion of the protocol are given in Section IV. Finally, we provide
conclusions and remarks on the future of the software in Section V.

2. Methodology

2.1 XPairIt Application Programming Interface (API) Philosophy and Structure

XPairIt incorporates a detailed and customizable style of control and analysis during a
simulation run, allowing a user to put in place a method whose behavior is dependent on
properties computed in real time. Its structure is in line with other software and their inherent
partitioning of simulation components. Namely, the Etomica Simulator of the Kofke Group at
the University at Buffalo and the LAMMPS Molecular Simulator of Sandia National Laboratories

5

 have both had significant influence on the organization of the XPairIt API (though all of the
code is original) (5, 39). The basic building blocks of a nanoscale simulation—Boxes, Atoms, and
Vectors—are represented in the software as Python objects. Methods, Integrators, Potentials,
and user-defined code perform operations on these objects to move atoms in space, or compute
properties of the system based on atomic positions or types. Through Python’s object-oriented
structure, a user may extend any one of these types to create a custom Method, Integrator, or
Potential, or simply use a combination of these in a unique way as a single Python script to
control a simulation or analyze its output. Figure 1 diagrams the main objects in XPairIt and how
they interact.

Figure 1. XPairIt API Diagram showing simulation components, class hierarchy,
control, and connection to external software (XExternal) and hardware (HPC).
Supported External Programs: PyRosetta, NAMD, PSFGen, STRIDE, VMD,
APBS, and GAMESS (1, 4, 34–37).

6

2.2 XPairIt API Classes

While not an exhaustive list, the classes below best frame the current version of the XPairIt API.

Atom. This object’s properties are taken directly from the properties of a real atom; position,
velocity, type, and radius. An extension of this object is created for our molecular docking
implementation, called AtomTypeBiological. This contains other information, such as charge,
occupancy, beta parameters, and species name.

Vector. This is a data structure holding a list of floats, as well as methods to perform vector
operations, such as addition, dot product, cross product, and normalize. Vector2D, Vector3D,
Vector3DRandom, and VectorN have been created to extend the original Vector class. The Atom
object creates its own Vector3D object to track its position.

Box. The simulation volume is defined by this class. Box also holds lists of all the atoms that are
“inside” the volume, information about boundary conditions and program components such as
neighbor lists, and provides methods for creating atoms or changing atom positions.

BoxBiological, an extension of Box, is created to handle other properties specific to a biological
simulation, such as loading a PDB file.

Simulation. This is the first object that should be created during the development of a simulation
with XPairIt. It contains structures for the user to connect many high-level simulation
components, such as Integrators and Methods, and allows these components to broadcast
information in a one-to-all type message, without knowledge of the other components. Included
here is also the software’s banner and copyright information for any connected external software.

Compute. These are simple classes that receive a list of Atoms and perform operations to
calculate specific properties of this list. Examples are CenterOfMass, DihedralAngle,
SharedInterfaceAtoms, RadialDistributionFunction, RadiusOfGyration, SecondaryStructure,
HydrogenBonds, MeanSquaredDisplacement and SurfacePoints.

Integrator. This class contains methods that perform an operation on the system, typically the
Atoms. Integrators may be created for various molecular dynamics integration schemes, or
Monte Carlo sampling styles. These custom integrators can extend the main Integrator class to
obtain access to callback functions to broadcast commands through Simulation.

Method. Typically, this structure contains code for a multi-operation scheme involving a
collection of Integrators. In the authors’ case, several different Method classes were created to
perform molecular docking simulations. Because of this hierarchy, a user can create a complex
simulation with only a few lines of code, using existing Method classes.

Residue, ResidueChain, Molecule. These are data structures that map to typical biological
groupings of atoms. An amino acid’s atoms are in a list within Residue, a bonded chain of these
amino acids are in a list within ResidueChain, and a collection of these bonded chains are in a

7

list within Molecule. The methods within these data structures allow for “top-down” and
“bottom-up” paths to their parent or child structures. For example, if a user is working with a
particular Atom, there are methods in place to get to that Atom’s parent Residue, ResidueChain,
and Molecule. Conversely, if a user has a Molecule, there are methods to choose a particular
ResidueChain within that Molecule, a particular Residue, and finally a specific Atom. This is
useful for passing logical groupings of atoms to Methods, Integrators, or Computes.

2.3 External Software Interface and Control

X____. These are interfaces for the various external software programs used with XPairIt and are
named using the “X” convention. For example, a nonexhaustive list of current interface classes
in XPairIt is XNAMD, XPyRosetta, XAPBS, XGAMESS, and XVMD. Specialized Integrators call
these interface classes to allow the user to control an external program.

IntegratorX____. A specialized form of the XPairIt Integrator which calls a similarly named X
class. The IntegratorX class enables the translation of XPairIt-style commands and structure, to
and from an external software structure. An example is IntegratorXNAMD, where general
Integrator-style methods call into XNAMD to setup, execute, and return output from the NAMD
Simulator. These Integrators are similar in structure to internal XPairIt Integrators, allowing a
user to easily perform operations with any type of IntegratorX.

2.4 A Simulation With XPairIt API

Figure 2 shows a simple Python script using the XPairIt API to create a molecular docking
simulation, employing several of the simulation building blocks listed in the previous section.
First, a Simulation object is created to hold a few of the working parts of the simulation. Next,
the Simulation is used to create a Box. Then, a configuration in the form of a PDB file is read in
to create a Molecule, ResidueChain(s), Residue(s), and the thousands of Atom and
AtomTypeBiological objects in the simulation. Next, a new docking method is created from
existing code. Subsequently, the Method is added to the Simulation, passing a name, the Method,
and the Box which the Method will operate on. Then after variables are created for the peptide
chain “X” and number of docking attempts, the setup routine in Method is called. Finally, the
Method is run with chosen parameters.

8

Figure 2. Python script example of a simple XPairIt docking simulation.

2.5 Improved Docking Methods for Peptide Systems with XPairIt Docking Protocol

Before we begin our global docking search, we first equilibrate the peptide and protein.
Simulation of the docking partners, peptide and protein, proceed separately. XPairIt drives an
NPT simulation at 1.0 atm and 300 K in NAMD, using the CHARMM interatomic potential with
TIP3P water (40, 41). The final structure of the protein from equilibration simulations is
minimized within NAMD. Atomic positions are captured by XPairIt and sent to PyRosetta, and
then the protein’s residue sidechain positions are sampled and minimized using the Rosetta
repacking scheme. This protein structure is then used in all docking runs. For peptide equilibration,
starting from a linear structure, the peptide is equilibrated for several nanoseconds. This dynamics
trajectory is saved as a series of 1000 snapshots, which are randomly selected as the peptide’s
starting structure in subsequent docking runs. This is also known as ensemble docking.

The docking portion of this protocol is separated into two stages: (1) the initial docking run,
testing peptide binding over the entire protein surface, and (2) a more focused docking run,
testing probable binding locations on the protein. The first stage is composed of 2000 to 5000

9

simulations, where the exact number varies with protein size. Each simulation begins by drawing
a random peptide structure from the initial dynamics trajectory and placing it in a simulation box
with an equilibrated, minimized protein structure. Within XPairIt, atom positions are sent to
PyRosetta. Controlling PyRosetta, the partners are randomly rotated around their centers of mass
and moved into contact with one another, until any pair of surface atoms of each partner is
approximately 4.0Å apart. This creates starting structures where the peptide is placed at a
uniform distribution of points on the protein’s surface.

For step (i) of the XPairIt Docking Protocol stage 1, these simulations (all 2000 to 5000 of them)
are run using the Rosetta DockingMCM method and the score12 score function, where the lowest
energy structure is determined from sampling small rotation and translation moves of the
peptide. Rosetta’s DockingMCM method also samples sidechain rotamers of the peptide and
protein. After step (i) is finished, atom positions are analyzed for structural and energetic
properties in a bookkeeping step, and sent to NAMD for step (ii). Here, molecular dynamics is
performed on the peptide and protein atoms within 15.0Å of the peptide, leaving other atoms
fixed. This simulation is performed at 300 K using the Generalized-Born Implicit Solvent
(GBIS+SASA), for 2.0 picoseconds (ps), and then the structure is minimized for 3000 conjugate
gradient steps (42). Finally, for step (iii), the structure’s sidechains are again repacked with
Rosetta, based on the score12 scoring function, and this structure is exported as a PDB file. A
typical change in peptide position for the three main steps of the XPairIt Docking Protocol is
shown in figure 3. The (i) docking, (ii) dynamics + minimization, (iii) repacking process is
repeated 10 times for additional random rotations of the peptide. After the first stage of the
docking protocol is complete, 2000 to 5000 simulations are run using a random peptide structure
and minimized protein structure, and we produce 20,000 to 50,000 probable bound structures.

Figure 3. Example positions of peptide during an XPairIt docking

simulation. (1) Initial placement, shown in green. (2) Docked
peptide, in blue. (3) Minimized structure using conjugate
gradient method after 2 ps molecular dynamics run, in red.

10

The second stage in the XPairIt Docking Protocol consists of many focused docking simulations,
which restrict the peptide to sample in only certain areas of the protein. To identify these areas,
the top 1000 (of 20,000 to 50,000) docked structures from stage 1 are sorted based on total
energy, and then ranked by their interface using Rosetta’s score12 score function. This is shown
in equation 1. Sorting is performed first based on total energy. This removes any spurious results
and restricts our sampling to more likely configurations. A further sort is then performed by
interface energy to capture favorable interactions between the peptide and protein.

 oteinPeptideTotalInterface EEEE Pr−−= (1)

These top 25 interface energy structures are then clustered using XPairIt, based on the peptide
heavy atom distance from each protein heavy atom using a cutoff distance of 4.0Å. This
calculation generates a list of protein residues that have contact with the peptide for each
structure, and these contacts are counted and totaled for the top 25 structures. For example, a
particular residue on the protein may be contacted by the peptide a total number of five times
when all 25 structures are analyzed. From these totals, the average number of peptide contacts
per protein residue is computed, and those residues that have contact amounts larger than one
standard deviation from the mean are recorded as possible binding locations. Next, the structure
with the best interface energy is identified at each of these possible binding locations and saved
as a starting structure for a stage 2 focused dock simulation. An example of this clustering is
show in the subsequent section.

Each simulation for the next stage begins by using the new starting structures from clustering,
and again drawing a random peptide structure from the equilibration trajectory. This random
peptide structure is then moved to the center of mass of the new starting structure. 1000 to 3000
of these simulations are run for each probable binding location and the (i) docking, (ii) dynamics
+ minimization, and (iii) repacking steps are repeated for 10 different orientations of the peptide.
10,000 to 30,000 docked structures now generated for each possible binding location are ranked
by their total energy using Rosetta’s score12 function, and top energies for each location are
compared to determine the likely binding location. The final result in the XPairIt Docking
Protocol is sorted and determined by the total energy.

3. Results and Discussion

We test the XPairIt Docking Protocol and present results from a case study, docking a short
peptide to a small protein. For this test we choose the 1RXZ system from the Protein Data Bank,
which has been previously studied with varying degrees of success, using two different docking
schemes (20, 27, 44). This particular case presents added complexity to the simulation of peptide
docking in the form of solvent and receptor induced peptide structure and probable receptor
flexibility. The two partners here are the 245 residue DNA polymerase sliding clamp protein,

11

aPCNA, and an 11-mer peptide (KSTQATLERWF) created from the binding motif of the Flap
EndoNuclease-1 (aFEN-1) (45). Equilibration with peptide trajectory sampling, one stage of
global docking, and one stage of focused docking are performed according to the previously
outlined XPairIt Docking Protocol.

3.1 Stage 1 Global Docking

After equilibration of the two partners and creation of the peptide trajectory, we ran 3000
simulations in the global docking stage. The resulting docked structures are sorted by total
energy, and the top 1000 are then ranked by interface energy. Figure 4 presents an overlay of the
top 25 docked structures based on interface energy. Protein residues with six or more contacts,
and used in the formulation of stage 2 focused docking starting location(s), are shown with a
shaded surface.

Figure 4. Stage 1 global docking results presented as overlay of the
top 25 docked structures. Structures are ranked by their
interface energy using Rosetta’s score12. Frequently
contacted protein residues are shown with a shaded surface.

In figure 5, the top 25 structures based on interface energy are clustered and plotted on a raw-
data histogram, showing specific protein residues (Residues on A) in contact with the peptide.
For the protein residues with corresponding contact, the average number of peptide contacts for
all 25 structures is 2.60 and the standard deviation is 2.47. This creates a contact integer number
cutoff of 6 or greater. From the data illustrated in figure 5, we identify protein residues 50,
121–126, 218–220 as having 6 or more contacts when we sample the top 25 structures.

12

Figure 5. Stage 1 global docking results presented as contact
histogram. Number of peptide residues (Frequency)
within 4.0Å of particular protein residues (Residues on
A) for the top 25 docked structures. Structures ranked
by their interface energy using Rosetta’s score12.

3.2 Stage 2 Focused Docking

Before beginning stage 2 focused docking, we generated starting configurations by identifying
the best ranked structure based on interface energy at each of the locations determined from the
clustering of stage 1 global docking results. A list of the locations on the protein, with
corresponding number of contacts and best ranked structure, are in table 1. From this list, four
unique docked structures—#3, #5, #7, and #8—were identified for starting structures, shown in
figure 6. 1000 docking simulations were then run for each docked starting structure, using
peptide configurations randomly drawn from the initial equilibration trajectory and moved to the
docked structure peptide’s center of mass. For each simulation, 10 rounds of docking were
performed using random rotations of the peptide to start each dock. Stage 2 focused docking
simulations are run as described in the previous section, and results are ranked by total energy
using the Rosetta score12 score function.

13

Table 1. Stage 1 global docking results clustered as list of
protein residues with six or more peptide contacts
in the top 25 structures. Structures ranked by
interface energy.

Protein
Residue

No. of Contacts
in Top 25

Best Ranked
Structure

Interface Energy
(Rosetta Units)

50 7 #3 –13.834
121 10 #3 —
122 11 #3 —
123 10 #7 –13.046
124 10 #5 –13.339
125 11 #5 —
126 7 #5 —
218 6 #8 –12.589
219 9 #5 —
220 7 #8 —

Figure 6. Stage 1 global docking top structures based on
interface energy for protein residues with sufficient
contact. Peptides are labeled with their rank for the
top 25 structures based on interface energy. Shown
as a shaded surface are protein residues
corresponding to histogram peaks in figure 5.

14

Results for the top ranked structures for each stage 2 focused docking starting location are shown
in table 2. Here, structures for each of the four previously identified locations are individually
ranked by total energy, and the structures with the lowest total energy for each location are
compared. In table 2, these top structures are listed arranged by total energy, with additional
details about their starting location, interface energy, and RMSD. Validation of these results is
conducted by computing the final complex’s peptide RMSD from the equilibrated crystal
structure of the docked complex. In comparing these values, it is clear that our top docked
structure is not within a reasonable distance of the actual binding location. However,
investigation of the rank 2 structure’s peptide RMSD shows very good agreement with the
equilibrated crystal structure. Subsequent analysis of the two remaining structures shows poor
agreement with the equilibrated crystal structure. Lacking knowledge of the RMSD,
differentiation of the top three structures based on total energy is difficult when one accounts for
thermal fluctuations of the peptide-protein complex.

Table 2. Stage 2 focused docking results for each starting structure, ranked by total
energy.

Rank Starting
Location

Total Energy
(Rosetta Units)

Interface Energy
(Rosetta Units)

Peptide RMSD from
Crystal Structure (Å)

1 G.#3 –551.133 –10.712 25.941

2 G.#8 –549.232 –21.541 3.386

3 G.#5 –547.761 –13.798 20.112
4 G.#7 –541.183 –8.739 32.135

In an experimental collaboration, studying a system with an unknown binding location, one
might choose to explore additional simulation methods at this phase of the protocol to help
differentiate the structures. Methods such as a long molecular dynamics run to insure binding
stability or a free energy method to compute a thermodynamically accurate binding energy could
be used. Depending on instrument throughput, a search space reduced to a handful of structures
may even be welcomed by the experimental team, who could now conduct a manageable number
of single or double mutation studies to check binding location. In our case we continue with
further analysis and look also at the interface energy for each of the top structures. Of the top
three structures, rank 2 possesses nearly double the interface energy of the other two structures
with similar total energy. The structure’s low RMSD when compared to the crystal structure and
low-interface energy make it an ideal candidate for a probable binding location. We continue
with analysis of this structure and comment on different aspects of the XPairIt Docking Protocol.

3.3 Analysis of Rank 2 Structure

The rank 2 structure from stage 2 focused docking is listed in table 2 and its starting structure
(G.#8) is shown in figure 7. The rank 2 result shows good agreement with the equilibrated crystal
structure, and peptide RMSDs for structures aligned by protein alpha-carbon atoms are 7.595Å

15

for G.#8 and 3.386Å for rank 2. For RMSD calculation, although both structures were aligned to
the equilibrated crystal structure using only protein alpha-carbon positions, there are several
highly flexible parts of the protein within the peptide binding region. It is likely that for the rank
2 structure the peptide may be bound in a very similar configuration to the equilibrated crystal
structure, but due to the flexible regions, RMSD values may be affected by only partial
alignment of the protein during the value’s computation. RMSD for the protein alpha-carbon
components in the focused structure vs. the crystal structure is 1.715Å.

Figure 7. Global dock #8 structure, one of four starting locations for
focused docking, with most frequently contacted protein
residues highlighted.

Analysis of the CHARMM interface energies with GBIS w/SASA used in the molecular dynamics
and minimization step (ii) of both docking rounds provides further description of the peptide-
protein interaction. Shown in table 3, when applied to the final structures of global and focused
rounds of docking, interface energies favor structure #8 (global) and #2 (focused, from G.#8),
correctly identifying the docked structures which best resemble the 1RXZ crystal structure.
Additionally, the effects of solvent and pair-wise electrostatic interactions are evident, but do not
suggest any aid in differentiating structures. When comparing the overall interface energy from
CHARMM+GBIS w/ SASA and the CHARMM van der Waals (vdW) component, the differences
between these two properties for focused docking #1 (G.#3) and focused docking #2 (G.#8) are

16

similar, meaning the remaining energetic contributions from electrostatics and solvent are
similar. Consequently, computation of the CHARMM interface energy with GBIS w/ SASA
correctly identifies the preferred bound structure, indicating that pair-wise electrostatics and
solvent driving forces play some part in the interface energy of the docked structures. However,
since the contribution from electrostatics and solvent in aggregate are positive, and also similar
for both focused docking results, it is likely they do not play an active role in forming these
particular docked structures. Our results show that the CHARMM vdW component is the deciding
factor in structure differentiation for 1RXZ.

Table 3. Final interface energy of three bound structures in score12, CHARMM with
Generalized-Born implicit solvent (GBIS), and CHARMM’s vdW component.

Structure Score12
(Rosetta Units)

CHARMM+GBIS
(kcal/mol)

CHARMM vdW
Component
(kcal/mol)

Global Dock #3 –13.834 –19.736 –37.183
Global Dock #8 –12.589 –23.315 –40.335

Focused Dock #1 (from G.#3) –10.712 –13.835 –31.728
Focused Dock #2 (from G.#8) –21.541 –38.780 –56.318

Crystal Structure –22.543 –52.246 –70.095

3.4 Effects of Molecular Dynamics Within the XPairIt Protocol

Finally, we have an opportunity to once again analyze the effect of molecular dynamics on
peptide docking results (38). In table 4 we list the Rosetta score12 interface energies at various
steps along both docking stages. There is a marked decrease in interface energy as we employ
NAMD molecular dynamics and minimization, as well as a final repacking by Rosetta. We
reiterate that during the step (i) Rosetta Dock, the peptide is translated and rotated, and peptide
and protein interface sidechains are repacked, similar to step (iii). Backbone angles and bond
lengths remain fixed. With the addition of molecular dynamics and minimization in step (ii), the
peptide and protein atoms are allowed to relax and move with the effects of temperature and
interatomic forces, creating greater contact between the peptide and protein surface, and
decreasing the interface energy. We attribute the second decrease in interface energy in step (iii)
by Rosetta sidechain repacking to a discrepancy between the CHARMM and score12 energy
functions. After step (ii) in the XPairIt Docking Protocol simulations, atom positions do not
change and are sent from NAMD, back to XPairIt, and then directly to PyRosetta for final
sidechain repacking. Additionally, a closer look at the effects of dynamics on the docked
structure is illustrated in figure 8, where we compare the per residue interface energy of the
peptide after step (i) and after step (iii) of stage 1 global docking. The LEFT plot shows minimal
contact of the peptide after step (i) Rosetta Dock, when compared to step (iii) Rosetta sidechain
repacking on the RIGHT plot.

17

Table 4. Interface energies for docked structures at each step of the XPairIt Docking Protocol.
Energies in Rosetta units.

Structure (i) Rosetta Dock (ii) NAMD MD
+ Minimization

(iii) Rosetta Repack
Sidechains

Global Dock #8 –1.525 –8.843 –12.589
Focused Dock #1 –10.241 –16.978 –21.541

Equilibrated Crystal Structure — — –22.543

Figure 8. Rosetta score12 interface energy per peptide residue (Chain X) for stage 1 global docking
#8 structure: LEFT step (i) Rosetta Dock and RIGHT step (iii) Rosetta Repack
Sidechains, after NAMD MD + Minimization. Peptide sequence: KSTQATLERWF. Note
difference in ordinate scales.

4. Summary and Conclusions

The XPairIt Docking Protocol is demonstrated here to be a suitable toolkit for the flexible
docking of peptides to protein receptors with unknown binding locations. Final docked structures
from global docking simulations of the 1RXZ system using the XPairIt Docking Protocol show
good agreement with the PDB crystal structure. Previous docking studies of this system by
Raveh et al. and Dagliyan et al. test the limits of their respective docking protocols (20–27).
Crystal structure refinement of the 1RXZ system by Raveh et al. using their FlexPepDock
protocol predicted a final structure of the peptide in helical form, which deviates from the
coiled/linear backbone of the peptide in its bound configuration. As reviewed in Section 1, using
FlexPepDock, peptide fragments are sampled to determine optimal structure, and show very
good results for all systems, except for 1RXZ and one other reported. We reserve any further
comparison to our protocol, as FlexPepDock is not used for global peptide docking—this method
may be best used with an unknown peptide structure, and a known protein binding pocket.
Peptide docking of the 1RXZ structures with discrete molecular dynamics and MedusaDock in

18

Dagliyan et al. shows good agreement with the crystal structure, recovering an RMSD on the
same order of magnitude as those reported here. However, Dagliyan et al. suggest that capturing
the binding induced protein structural change remains a major challenge. They note that the
inclusion of backbone flexibility in the flexible receptor simulations significantly increases the
computational time and prefer a fixed backbone with flexible sidechains, where their discrete
dynamics regularly run 30–40 ns.

While the XPairIt Docking Protocol dynamics runs are on the picosecond timescale and
therefore cannot guarantee large scale protein backbone motion, results from 1RXZ illustrate
some improvement in this case of receptor flexibility. When compared to the crystal structure,
the protein-only alpha-carbon RMSD for our top dock is 1.715Å—a sizable difference, as only
protein atoms within 15Å of the peptide move during our simulation and RMSD is averaged over
all protein alpha-carbons. Additionally, adding a focused round of docking using molecular
dynamics allows for significant improvement of protein peptide contact and an improvement of
RMSD, shown previously in figure 8 and section 3.4. These results indicate an important change
in both peptide and protein backbone structure, and are achieved with a small amount of
dynamics simulation time by combining the Rosetta and NAMD in a coordinated
implementation.

Overcoming the current challenges in global peptide docking, such as the representation of
flexibility and accurate energetics, require simulation of peptide-protein systems using multiple
methods, and accordingly, multiple software packages. The extendable XPairIt API provides a
unifying code structure, with the ability to successfully implement these software packages and
their methods on-the-fly, as customizable docking simulations within the XPairIt Docking
Protocol.

19

5. References

1. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. Journal of
molecular graphic 1996, 14, 33–38.

2. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science and
Engineering 2007, 9, 90–95.

3. Elcock, A. H.; Sept, D.; McCammon, J. A. Computer Simulation of Protein−Protein
Interactions. The Journal of Physical Chemistry B 2001, 105, 1504–1518, 2001/03/01.

4. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.;
Skeel, R. D.; Kale, L.; Schulten, K. Scalable Molecular Dynamics With NAMD. Journal of
Computational Chemistry 2005, 26, 1781–1802.

5. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of
Computational Physics 1995, 117, 1–19.

6. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing
Parallel Molecular Dynamics Implementation. Computer Physics Communications, 1995,
91, 43–56.

7. Leaver-Fay, A.; Tyka, M.; Lewis, S. M.; Lange, O. F.; Thompson, J.; Jacak, R.; Kaufman,
K.; Renfrew, P. D.; Smith, C. A.; Sheffler, W. ROSETTA3: An Object-Oriented Software
Suite for the Simulation and Design of Macromolecules. Methods Enzymol 2011, 487,
 545–574.

8. Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.;
Banks, J. L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2.
Enrichment Factors in Database Screening. Journal of medicinal chemistry 2004, 47,
1750–1759.

9. Molecular Operating Environment (MOE), ed. H3A 2R7: Chemical Computing Group Inc.,
Montreal, QC, Canada, 2012.

10. Hinsen, K. The Molecular Modeling Toolkit: a New Approach to Molecular Simulations.
Journal of Computational Chemistry, vol. 21, pp. 79-85, 2000.

11. Eastman, P.; Friedrichs, M. S.; Chodera, J. D.; Radmer, R. J.; Bruns, C. M.; Ku, J. P.;
Beauchamp, K. A.; Lane, T. J.; Wang, L.-P.; Shukla, D. OpenMM 4: A Reusable,
Extensible, Hardware Independent Library for High-Performance Molecular Simulation.
Journal of chemical theory and computation 2012, 9, 461–469.

20

12. Janin, J.; Henrick, K.; Moult, J.; Eyck, L. T.; Sternberg, M. J. E.; Vajda, S.; Vakser, I.;
Wodak, S. J. CAPRI: A Critical Assessment of Predicted Interactions. Proteins: Structure,
Function, and Bioinformatics, 2003, 52, 2–9.

13. Fleishman, S. J.; Whitehead, T. A.; Ekiert, D. C.; Dreyfus, C.; Corn, J. E.; Strauch, E.-M.;
Wilson, I. A.; Baker, D. Computational Design of Proteins Targeting the Conserved Stem
Region of Influenza Hemagglutinin. Science 13 May 2011, 332, 816–821.

14. Kaufmann, K. W.; Lemmon, G. H.; DeLuca, S. L.; Sheehan, J. H.; Meiler, J.; Practically
Useful: What the Rosetta Protein Modeling Suite can do for you. Biochemistry 2010, 49,
2987–2998.

15. Gray, J. J.; Moughon, S.; Wang, C.; Schueler-Furman, O.; Kuhlman, B.; Rohl, C. A.; Baker,
D. Protein–Protein Docking With Simultaneous Optimization of Rigid-Body Displacement
and Side-Chain Conformations. Journal of Molecular Biology 2003, 331, 281–300.

16. Sivasubramanian, A.; Maynard, J. A.; Gray, J. J. Modeling the structure of mAb 14B7
Bound to the Anthrax Protective Antigen. Proteins: Structure, Function, and Bioinformatics
2007, 70, 218–230.

17. Chaudhury, S.; Gray, J. J. Identification of Structural Mechanisms of HIV-1 Protease
Specificity Using Computational Peptide Docking: Implications for Drug Resistance.
Structure 2009, 17, 1636–1648.

18. Sammond, D. W.; Bosch, D. E.; Butterfoss, G. L.; Purbeck, C.; Machius, M.; Siderovski, D.
P.; Kuhlman, B. Computational Design of the Sequence and Structure of a Protein-Binding
Peptide. Journal of the American Chemical Society 2011, 133, 4190–4192.

19. Raveh, B.; London, N.; Schueler‐Furman O. Sub‐Angstrom Modeling of Complexes
Between Flexible Peptides and Globular Proteins. Proteins: Structure, Function, and
Bioinformatics 2010, 78, 2029–2040.

20. Raveh, B.; London, N.; Zimmerman, L.; Schueler-Furman, O. Rosetta FlexPepDock ab-
initio: Simultaneous Folding, Docking and Refinement of Peptides Onto Their Receptors.
PLoS One 2011, 6, e18934.

21. Alonso, H.; Bliznyuk, A. A.; Gready, J. E. Combining Docking and Molecular Dynamic
Simulations in Drug Design. Medicinal Research Reviews 2006, 26, 531–568.

22. Audie, J.; Swanson, J. Recent Work in the Development and Application of Protein–Peptide
Docking. Future 2012, 4, 1619–1644.

23. Lin, J.-H.; Perryman, A. L.; Schames, J. R.; McCammon, J. A. Computational Drug Design
Accommodating Receptor Flexibility: the Relaxed Complex Scheme. Journal of the
American Chemical Society 2002, 124, 5632–5633.

21

24. Okimoto, N.; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto, G.; Yanai, R.; Ohno, Y.;
Narumi, T.; Taiji, M. High-Performance Drug Discovery: Computational Screening by
Combining Docking and Molecular Dynamics Simulations. PLoS Computational Biology
2009, 5, e1000528.

25. Antes, I. DynaDock: A New Molecular Dynamics‐Based Algorithm for Protein–Peptide
Docking Including Receptor Flexibility. Proteins: Structure, Function, and Bioinformatics
2010, 78, 1084–1104.

26. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.;
Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking With Selective Receptor
Flexibility. Journal of Computational Chemistry 2009, 30, 2785–2791.

27. Dagliyan, O.; Proctor, E. A.; D’Auria, K. M.; Ding, F.; Dokholyan, N. V. Structural and
Dynamic Determinants of Protein-Peptide Recognition. Structure 2011, 19, 1837–1845.

28. Nowosielski, M.; Hoffmann, M.; Kuron, A.; Korycka‐Machala, M.; Dziadek, J. The
MM2QM tool for Combining Docking, Molecular Dynamics, Molecular Mechanics, and
Quantum Mechanics. Journal of computational chemistry 2012.

29. Whalen, K. L.; Chang, K. M.; Spies, M. A. Hybrid Steered Molecular Dynamics‐Docking:
An Efficient Solution to the Problem of Ranking Inhibitor Affinities Against a Flexible Drug
Target. Molecular informatics 2011, 30, 459–471.

30. WDeLano, . L. The PyMOL Molecular Graphics System, 2002.

31. Lill, M. A.; Danielson, M. L. Computer-Aided Drug Design Platform Using PyMOL.
Journal of computer-aided molecular design 2011, 25, 13–19.

32. Seeliger, D.; De Groot, B. L. Ligand Docking and Binding Site Analysis With PyMOL and
Autodock/Vina. Journal of Computer-Aided Molecular Design 2010, 24, 417–422.

33. Johnson, G. T.; Autin, L.; Goodsell, D. S.; Sanner, M. F.; Olson, A. J. < i> ePMV</i>
Embeds Molecular Modeling into Professional Animation Software Environments. Structure
2011, 19, 293–303.

34. Chaudhury, S.; Lyskov, S.; Gray, J. J. PyRosetta: A Script-Based Interface for Implementing
Molecular Modeling Algorithms Using Rosetta. Bioinformatics 2010, 26, 689–691.

35. Frishman, D.; Argos, P. Knowledge‐Based Protein Secondary Structure Assignment.
Proteins: Structure, Function, and Bioinformatics 2004, 23, 566–579.

36. Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Electrostatics of
Nanosystems: Application to Microtubules and the Ribosome. Proceedings of the National
Academy of Sciences 2001, 98, 10037–10041.

22

37. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.;
Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. General Atomic and Molecular Electronic
Structure System. Journal of Computational Chemistry 2004, 14, 1347–1363.

38. Sellers, M.; Hurley, M. M. In Silico Design of Smart Binders to Anthrax PA. In SPIE
Defense, Security, and Sensing, 2012; pp 835807-835807-9.

39. Bucher, H. F.; Schultz, A. J.; Kofke, D. A. An Eclipse-Based Environment for Molecular
Simulation. In Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange,
2005; pp 130–134.

40. MacKerell, Jr, A. D.; Bashford, D.; Bellott, M.; Dunbrack, Jr, R. L.; Evanseck, J. D.; Field,
M. J.; Fischer, S.; Gao, J. a.; Guo, H.; Ha, S. a. All-Atom Empirical Potential for Molecular
Modeling and Dynamics Studies of Proteins. The Journal of Physical Chemistry B 1998,
102, 3586–3616.

41. Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. Semianalytical Treatment of
Solvation for Molecular Mechanics and Dynamics. Journal of the American Chemical
Society 1990, 112, 6127–6129.

42. Tanner, D. E.; Chan, K.-Y.; Phillips, J. C.; Schulten, K. Parallel Generalized Born Implicit
Solvent Calculations With NAMD. Journal of Chemical Theory and Computation 2011, 7,
3635–3642.

43. London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The Structural Basis of Peptide-
Protein Binding Strategies. Structure 2 February 2010, 18, 188–199.

44. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov,
I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research 2000, 28, 235–242.

45. Chapados, B. R.; Hosfield, D. J.; Han, S.; Qiu, J.; Yelent, B.; Shen, B.; Tainer, J. A.
Structural Basis for FEN-1 Substrate Specificity and PCNA-Mediated Activation in DNA
Replication and Repair. Cell 2004, 116, 39–50.

23

List of Symbols, Abbreviations, and Acronyms

aPCNA Proliferating Cell Nuclear Antigen

aFEN-1 Flap EndoNuclease-1

API application programming interface

CDK2 Cyclin-dependent Kinase-2

CHARMM Chemistry at Harvard Molecular Mechanics

DNA Deoxyribonucleic acid

GOLD Genetic Optimization for Ligand Docking

GPU graphics processing unit

MC Monte Carlo

MCM Monte Carlo Mover

MM/PB-SA Molecular Mechanics / Poisson-Boltzmann Surface Area

MMTK Molecular Modeling Toolkit

MOE Molecular Operating Environment

OPMD optimized potential molecular dynamics

SMD steered-molecular dynamics

ePMV embedded Python Molecular Viewer

HPC high-performance computing

NAMD Nanoscale Molecular Dynamics

GBIS Generalized-Born Implicit Solvent

SASA solvent accessible surface area

PDB protein data bank

ps picoseconds

RMSD root mean squared displacement

24

vdW van der Waals

VMD Visual Molecular Dynamics

25

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR USARL
 (PDF) RDRL WML B
 M SELLERS

 26

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction and Background
	2. Methodology
	2.1 XPairIt Application Programming Interface (API) Philosophy and Structure
	2.2 XPairIt API Classes
	2.3 External Software Interface and Control
	2.4 A Simulation With XPairIt API
	2.5 Improved Docking Methods for Peptide Systems with XPairIt Docking Protocol

	3. Results and Discussion
	3.1 Stage 1 Global Docking
	3.2 Stage 2 Focused Docking
	3.3 Analysis of Rank 2 Structure
	3.4 Effects of Molecular Dynamics Within the XPairIt Protocol

	4. Summary and Conclusions
	5. References
	List of Symbols, Abbreviations, and Acronyms

